Powered by Blogger.

Methods And Techniques For Liposome Manufacturing

By Jody Leach


The discovery of liposomes with their many interesting properties has attracted much attention. These tiny spheres are suitable for using as delivery vehicles for nutrients and drugs into the human body. Identical to human cell membranes, they easily transfer and deliver active ingredients. Liposome manufacturing involves the same basic steps but the use many different techniques. Research is constantly being done to increase their effectiveness.

When phosphlipids such as lecithin come into contact with water, an interesting effect occurs. The molecules consist of a head which loves water and two tails that repel it. This means that the heads all face one side and the tails the other. Another layer is formed with tails all facing the tails of the first later and the heads facing the other way. These layers form the membranes around and inside every cell of the human body.

Liposomes can be used as delivery vehicles for a wide variety of drugs, vaccines, enzymes, genetic material and for some nutritional supplements as well. They not only allow for release of encapsulated materials but are beneficial in themselves for cells. The lipids used to construct the fatty part of the molecule is used by the cell wall for repair and construction of new membranes.

The tiny size of liposomes means they are quickly assimilated into the bloodstream for delivery throughout the body. The payload is biologically inert until it is delivered to needy cells. They are all basically the same but the differences between them occur in the way they are released, how long this takes as well as where and why this occurs.

The methods used in preparation may all be quite different but the basic stages remain the same. Thin lipid films are hydrated and this causes liquid bilayers to form. These large vesicles need to be reduced in size and energy output is required for this. Sonication is the use of sound waves and another mechanical method used is extrusion.

Liposomes are actually fairly simple to make, not requiring complex materials, equipment or methods. Each method and technique offers certain benefits and has some failings. Sonication can cause structural changes to what is entrapped. Liquid hydration methods do not produce a high payload.

The type of manufacturing processes and equipment used both have an effect on the type of liposomes produced. Inconsistent sizes, high production costs and structural instability are just some of the challenges faced in production. Many advances are being made in this respect as research proceeds at a rapid pace. An exciting example is research into how to make liposomes that can target certain organs or diseased tissue.

A great benefit involved in using liposomes is that they can be customized for different applications by varying the method of preparation, size, lipid content and surface charge. Many conventional techniques for preparing them and reducing their size are fairly simple to implement and equipment does not have to be too sophisticated. However, novel routes are being discovered for preparation due to motivation to scale-down for point-of-care applications or or to scale-up for industrial applications.




About the Author:



0 comments:

Post a Comment